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Abstract

Models for incompressible immiscible bifluid flows with surface tension are here considered. Since Brackbill et al. [J.U.
Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335–
354] introduced the Continuum Surface Force (CSF) method, many methods involved in interface tracking or capturing
are based on this reference work. Particularly, the surface tension term is discretized explicitly and therefore, a stability
condition is induced on the computational time step. This constraint on the time step allows the containment of the ampli-
fication of capillary waves along the interface and puts more emphasis on the terms linked with the density in the Navier–
Stokes equation (i.e. unsteady and inertia terms) rather than on the viscous terms. Indeed, the viscosity does not appear, as
a parameter, in this stability condition.

We propose a new stability condition which takes into account all fluid characteristics (density and viscosity) and for
which we present a theoretical estimation. We detail the analysis which is based on a perturbation study – with capillary
wave – for which we use energy estimate on the induced perturbed velocity. We validate our analysis and algorithms with
numerical simulations of microfluidic flows using a Level Set method, namely the exploration of different mixing dynamics
inside microdroplets.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Analysis and algorithms derived herein are the result of our interest in modelling and numerically simulate
bifluid flows in microfluidics. Over the last decade, microfluidics has revolutionized our ability to manipulate
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and control flows in channels the width of a single human hair. The deeply affected fluid behaviour, due to
preponderance of surface tension and viscosity, is used in applications ranging from biology and medicine
to chemistry and materials processing. Among all applications of two fluids flows at low Reynolds numbers,
we are more particularly interested in the use of microdroplets. Creation and transport of droplets in micro-
channels are extensively described in the literature both from theoretical and experimental point of view (e.g.
see [2,45,20]). Making the most of surface tension effects, flows of two immiscible fluids in microdevices allow
to create monodisperse emulsions where droplets of the same size move through microchannels networks and
are used as microreactors to study very fast chemical kinetics (of the order of a millisecond [44]).

In this paper, we will thus consider models for immiscible bifluid flows with surface tension. A vast amount
of numerical methods has been developed for modelling of such free surface flows. A standard classification
first leads to distinguish Lagrangian, Eulerian or mixed Lagrangian–Eulerian methods regarding the model-
ling of the flow. In Lagrangian methods, a mesh element always contains the same fluid particles and thus
computational mesh moves with the fluid. Conversely, Eulerian methods are based on a fixed mesh in which
the fluid cross the computational cells. A second distinction lies in the modelling of the evolving interface
which can be explicitly tracked along trajectories of fluid particles, leading to so-called interface tracking
methods; conversely, the interface can be implicitly tracked by embedding it in a globally defined field variable
such as viscosity, density or volume fraction, leading to so-called interface capturing methods. Among the
methods for simulating moving interface we find VOF [13,37], Level Set [30], front tracking [54,53], diffuse-
interface [1,3,22] and lattice Boltzmann [6,11,15] methods, to name a few.

Among models for surface tension, the Continuum Surface Force (CSF) formulation introduced by
Brackbill et al. [4] has been widely and fruitfully used in the literature: e.g. see [33,41] for VOF method or
[48,25] for Level Set method. The idea is to treat the surface tension as a body force in the momentum
equation. This force, distributed within a transition zone, allows straightforward implementation of surface
tension effect, even when topological changes occur. We note that numerous studies has been conducted to
improve a drawback of this method, namely spurious currents (also known as parasitic currents) generated
in the neighbourhood of the interface. These spurious currents are unphysical vortex-like velocities. First
observed in Boltzmann interfacial methods, parasitic currents are also presented by Lafaurie et al. in [23]
where they suggested the alternative Continuum Surface Stress (CSS) method. Then follow several approaches
to tackle this problem [34,31,52,33,40,51,25]. Their key ideas in suppressing parasitic currents, usually men-
tioned in this literature, are (i) improvement of curvature computation, (ii) achievement of discrete balance
between surface tension and pressure gradient (iii) adaptive time integration scheme to tackle the stiffness
induced by surface tension [24]. In addition, a singular and very promising work is developed by Jamet
and coworkers [17]. It relies more on minimal energy consideration and can eliminate parasitic currents down
to machine precision. Note, that this approach is applied in the context of diffuse interface and second gradient
method [16].

In [4], as in many later approaches based on CSF method, the surface tension term is discretized explicitly
and therefore, a stability condition is induced on the computational time step. This constraint on the time step
allows the containment of the amplification of capillary waves along the interface. Furthermore most of the
aforementioned methods use the stability condition derived in [4]. This stability condition puts more emphasis
on the terms linked with the density in the Navier–Stokes equation (i.e. unsteady and inertia terms) rather
than on the viscous terms. Indeed, the viscosity does not appear, as a parameter, in this stability condition.
In this paper, we propose a new stability condition for which we present a theoretical estimation for flows with
low and medium Reynolds numbers. This stability condition involves the fluid density as well as its viscosity.
Besides, considering two regimes we can exhibit two stability conditions which are more restrictive and such
that one of them is the condition proposed in [4] and the other is more suited for Stokes like flows. Numerical
validation is done using a Level Set method.

Level Set methods have been applied with great success in a broad range of physical and image processing
applications (see books [29,38]). The original formulation [30], together with tools of the Level Set technology
such as (W)ENO schemes, TVD Runge–Kutta schemes [42,43,19,18] and PDE-based redistanciation are used
here to achieve accurate simulation of surface tension-driven flows. We note that numerical studies of flows at
micrometer scale had already been conducted. In a series of papers, Yu et al. [55–57] perform abundant
numerical simulations of ink-jet printing for both Newtonian and viscoelastic fluids; in these applications,
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the Reynolds number is rather high, namely 40–90. Shapiro and Drikakis [39] developed specific methods for
diffusion broadening in two- and three-dimensional microfluidic channels. De Menech performed simulation
of droplet breakup in a microfluidic junction, with a phase field method [26]. Also concerning droplet forma-
tion, Renardy used very recently the VOF-PROST method to study the effects of confinement and inertia on
the production of droplets [32]. In this paper, we will present numerical results for microflows with Reynolds
number of order one or less, showing different mixing dynamics inside the microdroplets which are in good
agreement with results reported in the literature.

The remainder of this paper is as follows. Section 2 is devoted to the presentation of mathematical mod-
els used for the simulation of bifluid flows with surface tension, adopting a CSF formulation. Section 3 then
provides the description of the numerical resolution approach, discretizations and solvers. The main result
of this paper concerning the new numerical stability condition is then derived in Section 4. The analysis is
based on a perturbation study – with capillary wave – for which we use energy estimate on the induced
perturbed velocity. We will show numerically that a degenerate version – of this general stability condition
– for Stokes like flows is better suited and discuss this point in more details. We will see that stability issue
described herein has applications beyond the micrometer scale domain and, depending on fluids properties,
can be applied to meter scale flow simulations. Finally, in Section 5, we present numerical results of micro-
droplets simulations.

2. Concerned models for bifluid flows

In this study, we consider flows of two immiscible fluids assumed to be viscous and Newtonian. We further
assume that the flow is isothermal and fluids are incompressible and homogeneous. Densities and viscosities
are thus constant within each fluid. The governing equations can then be expressed by the Navier–Stokes
equation
q
ou

ot
þ u � ru

� �
�r � ð2gDuÞ þ rp ¼ F 8ðt; xÞ 2 Rþ � X; ð1Þ
together with the incompressibility condition,
r � u ¼ 0 8ðt; xÞ 2 Rþ � X; ð2Þ

where X is the 2D (or 3D) bounded fluid domain, u ¼ ðu; vÞ is the velocity field, p the pressure, q the density, g
the viscosity, F any body force (such as gravitational acceleration or surface tension, as we will describe in the
following) and Du ¼ ðruþrTuÞ=2.

Bearing in mind that we will present some microfluidic applications at the end of this paper, we mention
now that (1) reduces to Stokes equation when inertia influence can be neglected:
q
ou

ot
�r � ð2gDuÞ þ rp ¼ F 8ðt; xÞ 2 Rþ � X; ð3Þ
Moving interfaces can be handled with the Level Set method – introduced by Osher and Sethian in [30] (see
also [29,38]) – and we use here the approach of Sussman et al. [48] for incompressible two-phase flows. The
interface between the two fluids is thus captured by advecting the Level Set function / with the flow velocity u,
o/
ot
þ u � r/ ¼ 0 8ðt; xÞ 2 Rþ � X; ð4Þ
where / has to be thought as a signed distance function. Affecting the subscript 1 and 2 to all quantities related
respectively to fluid 1 or fluid 2, the Level Set function is, for instance, such that
/

< 0 in fluid 1;

¼ 0 on the interface;

> 0 in fluid 2:

8><
>: ð5Þ
Hence (1) is a single fluid continuum model for the flow with variable density and viscosity given, respectively,
by
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q ¼q1 þ ðq2 � q1ÞHð/Þ; ð6Þ
g ¼g1 þ ðg2 � g1ÞHð/Þ; ð7Þ
where H is the Heaviside function.
Being here dedicated to flows where surface tension is preponderant, we will assume in the following that

gravitational acceleration is negligible and thus, the body force F is restricted to surface tension. In this sharp-
interface approach, we further assume that surface tension is constant along the interface and we adopt the
Level Set version of the CSF method to write the surface tension force Fr as
Fr ¼ rjdð/Þn; ð8Þ

where r is the surface tension coefficient, n is the unit normal to the interface, j is the curvature of the interface
and dð/Þ is the Dirac delta function localized on the interface. This formulation of the surface tension has been
used by Unverdi and Tryggvason [54] and Brackbill et al. [4]. This complete Level Set formulation with the
Navier–Stokes equations for two-fluids flows was derived by Chang et al. [5] and later used in many other
works (Sussman et al. [47,46], Olsson and Kreiss [28], Marchandise et al. [25], to new a few).

In a Level Set framework, the unit normal to the interface is classically obtained via /,
n ¼ r/
jr/j

����
/¼0

ð9Þ
as well as the mean curvature of the interface,
j ¼ r � r/
jr/j

� �����
/¼0

: ð10Þ
3. Numerical resolution approach

In this section, we describe the general procedure, discretizations of the model and flow solver used to com-
pute evolving interfaces for bifluid flows.

3.1. General procedure

In the following, we will consider geometry in two dimensions for ease of presentation. The 3D approach
follows the same philosophy. The algorithm is as follows:

(1) Initialize a Level Set function / to represent the interface and update physical quantities g and q.
(2) Compute the unit normal n and the curvature j.
(3) Solve the Navier–Stokes equation for (u; p).
(4) Update / by solving the transport equation associated to u.
(5) Eventually, apply redistanciation procedure on /, if needed.
(6) Iterate (2)–(5) for each step of the time discretization.

Step (5) has been introduced in Level Set methods in order to improve mass conservation which is a draw-
back often mentioned in the literature. Mulder et al. [27] showed that taking / as a signed distance function
improve the accuracy of the method. Moreover, Chopp [7] went a step further introducing the concept of red-

istanciation: to achieve more accurate computation, / should remain a signed distance function along itera-
tions and thus should be periodically reinitialized; here several approaches exist: on the one hand,
reinitialization is applied at each time step, and on the other hand, periodicity is strictly greater than one iter-
ation (e.g. 10 iterations).

3.2. Discretizations

A first-order discretization is used for evolving the equations in time. The superscripts n and nþ 1 repre-
sent, respectively, the current and next time level. Following the algorithm presented in the last section, we
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have current un and /n which, by solving Navier–Stokes equation, gives ðunþ1; pnþ1Þ; we can then solve trans-
port equation for /nþ1. To sum up:
qn unþ1 � un

Dt
þ un � run

� �
�r � ð2gnDunþ1Þ þ rpnþ1 ¼ rjndð/nÞn; ð11Þ

r � unþ1 ¼ 0; ð12Þ
/nþ1 � /n

Dt
þ unþ1:r/n ¼ 0; ð13Þ
where Dt is the computational time step. We would like to make several comments here. First, the surface ten-
sion term is discretized explicitly which implies a specific numerical stability condition as we will see in the
following section. Second, one can also use higher order discretizations in time but this does not change
the core result proposed in this paper. Finally, in our code, we can use TVD Runge–Kutta scheme in time
of order 2 or 3 for the transport equation (following Shu and Osher [42]).

For spatial discretization of (11) and (12), we use a finite-volume method on a staggered grid as in the
Marker and Cell (MAC) method of Harlow and Welch [12].

Concerning the surface tension term rjdð/Þn ¼ rr � nrHð/Þ, we use a mollified Heaviside function on few
cells (e.g. 3) and a central scheme to approximate the curvaturer � n ¼ r � r/

jr/j. Note that, for a slightly improve-

ment of numerical results, we prefer to approximate the curvature r � r~/
jr~/j, where ~/ is a five-point average of /.

The transport equation (13) is discretized with a WENO5 scheme [18].
For the redistanciation of the function /, we use a reinitialization equation which is discretized by the

method of Russo and Smereka [35].

3.3. Flow solver

In order to solve (11) and (12) for ðunþ1; pnþ1Þ, we use an augmented Lagrangian method (see e.g. [49,8,10]).
This algorithm consists in solving Navier–Stokes with an iterative method in order to converge towards a

solution which satisfies the incompressibility constraint. To this end, we denote in a natural way ðukþ1; pkþ1Þ
and ðuk; pkÞ the variables of this iterative process. We proceed as follows:

(1) Initialize ðu0; p0Þ (e.g. solving Stokes equation).
(2) Solve the following linear system for ukþ1:
q
Dt

ukþ1 �r � ð2gDukþ1Þ þ h1r r � ukþ1ð Þ ¼ q
Dt

un � qun:run þ rjndð/nÞn�rpk ð14Þ
(3) Update the pressure pkþ1 via
pkþ1 ¼ pk � h2r � ukþ1: ð15Þ

(4) Iterate (2)–(3) until convergence (e.g. when jpkþ1 � pkj < f or jr � ukþ1j < f)
(5) Finally, assign ðunþ1; pnþ1Þ ¼ ðukþ1; pkþ1Þ,

where h1 and h2 are numerical coefficients of the augmented Lagrangian and f is the desired convergence cri-
teria. In our computations, we take h1 ¼ h2 ¼ 1. Remark that the initialization step (1) can be done as follows,
depending on the current status in the global evolution computation:

� if the initial physical time step of the simulation must be computed, and one does not have any ‘‘natural”
initial guess either for ðu0; p0Þ or for ðu0; p0Þ, one can compute the solution of the stationary Stokes equa-
tion. To this end, it suffices to apply the above algorithm with any initial ðu0; p0Þ (e.g. ðu0; p0Þ ¼ ð1; 1Þ) and
imposing q ¼ 0. At convergence, obtained solution is an ad hoc candidate ðu0; p0Þ for initializing unsteady
Navier–Stokes computation;

� if several iterations are already computed, one could simply assign ðu0; p0Þ ¼ ðun; pnÞ.

In the microfluidic applications of this paper, where a Stokes model is used for the flow, this augmented
Lagrangian algorithm converges in 4 or 5 iterations to the solution such that the vanishing-divergence con-
straint is verified at the order of the divergence approximation, say at the second-order.
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4. Stability condition and the role of surface tension

Formulation (11)–(13) classically induces a numerical stability condition on the time step. First, the time
step must obey the CFL condition due to the convective terms of Navier–Stokes and transport equation. Sec-
ond, the explicit discretization of the surface tension term induces another restriction on the time step. This
constraint on the time step allows the containment of the amplification of capillary waves along the interface.

Most of methods based on the CSF formulation use the surface tension-induced stability condition derived
in the seminal work of Brackbill et al. [4] and other derivations also lead to similar conditions (e.g. see [21]).

In this section, we derive a new stability condition induced by surface tension for flows with low and med-
ium Reynolds numbers.

4.1. Stability analysis

Proposition 1. Assume that (1) and (2) is discretized in time by an explicit discretization of the surface tension
term and that (4) is discretized by a stable explicit scheme. Then, for sufficiently small Reynolds numbers, a

numerical scheme, associated to such a time discretization and all space discretizations, is stable under the
condition:
Dt 6 min Dtc;Dtrð Þ; with ð16Þ
Dtc ¼ c0kuk�1

L1ðXÞDx and ð17Þ

Dtr ¼ Dtrðq; gÞ ¼
1

2
c2

g
r

Dxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2

g
r

Dx
� �2

þ 4c1

q
r

Dx3

r !
ð18Þ
where Dt is the time step, Dx is the space step of the discretization, and c0, c1, c2 do not depend on the physical and

discretization data of the problem.

Remark 1. In this proposition, the restriction on the Reynolds number holds only because of the nonlinear
term in Navier–Stokes equations. This restriction corresponds to an assumption of laminar flows.

Remark 2. Note that, as shown in (18), the time step Dtr depends on the density and the viscosity. The cap-
illary time step derived in [4] verifies
DtBKZ �
ffiffiffiffiffiffiffiffiffiffiffi
q
r

Dx3

r
� Dtrðq; 0Þ: ð19Þ
The capillary time step related to Stokes equation (when neglecting inertia phenomena)
DtSTK �
g
r

Dx � Dtrð0; gÞ: ð20Þ
Finally, we remark that the capillary time step Dtr is the less restrictive, since
Dtr P DtSTK and Dtr P DtBKZ: ð21Þ

Proposition 1 then shows numerical stability under the well-known condition
Dt 6 minðDtc;DtBKZÞ: ð22Þ

Moreover, this proposition also shows numerical stability under the condition
Dt 6 minðDtc;DtSTKÞ: ð23Þ

We will more particularly focus on numerical validation of (23) in Section 4.2 and then discuss and compare
all these conditions in Section 4.3.

We note that the following derivation is not, in a strict sense, a mathematical proof since two relevant phys-
ical assumptions on the Navier–Stokes solutions are introduced step by step in the derivation. Actually, these
assumptions allow to complete the mathematical derivation of inequality verified by a ‘‘capillary velocity”
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(which will be precised below) and are thus useful for numerical analysis of the time step constraint. Apart
from these two relevant assumptions the whole derivation consists in rigorous mathematical analysis.

Derivation

First, convection terms imply the constraint Dt 6 c0kuk�1
L1ðXÞDx which is the classical CFL condition where

c0 depends on the choice of the scheme to discretize the transport equation (4).
Second, the condition involving Dt 6 Dtr avoids the oscillation phenomena of the interface due to surface

tension and this condition is the main objective of the present derivation. Let us begin by outlining how we
proceed:

(1) When (11)–(13) is solved numerically, some small consistent numerical errors lead to some equally small
perturbations of the interface shape which in turn induce a perturbation velocity, also called capillary

velocity since it is due to surface tension (see Fig. 1).
(2) In order for the explicit discretization (11) to be stable with respect to surface tension influence, one

needs to choose a sufficiently small time step so that the displacement (during the time step) of the inter-
face is smaller than the size d of the perturbation of the interface (see Fig. 1), i.e.:
Dtr 6
d
kwk ; ð24Þ
where kwk is the norm of the perturbed velocity (which will be defined in the following) induced by sur-
face tension.

(3) In order to find the stability condition, we thus need to find a refined bound on velocity with respect to
the perturbation of the interface: this is the key point of the analysis and the new contribution compared
to previous heuristics.

In order to gauge the extent of this perturbed velocity, we perform the analysis on the continuous problem
instead of the discrete problem. For that, we assume that the numerical scheme approximates consistently the
continuous problem.

We consider a smooth interface C0ðtÞ, at a time t, and assume it is parametrized as
C0ðtÞ ¼ fðxC0
ðsÞ; yC0

ðsÞÞ 2 R2=s 2 ½�1; 1Þg; ð25Þ

Let then f be a C2 function with suppðf Þ � ½�1; 1� such that kf kC0 ¼ 1 and kf kC2 ¼ Oð1Þ. We consider the
following perturbation of C0ðtÞ: � �� �n o
CðtÞ ¼ xC0
ðsÞ; yC0

ðsÞ þ df
s
L

2 R2=s 2 ½�1; 1Þ ; ð26Þ

where d and L are, respectively, the amplitude and the wavelength of a small perturbation. We will see that we
are concerned with small wavelength L, which generates some high curvatures variations and, in turn, some
high local velocities. The limitation on time step is such that the numerical scheme has to predict an interface
Cðt þ DtÞ with a smaller perturbation than the one of CðtÞ. The same analysis can then be performed when
considering a perturbation of the velocity instead of a perturbation of the interface.

Let us recall that in the Level Set framework, a regularization of Dirac delta function (rHð/Þ) is obtained
by considering H e instead of H, where H e is a smooth increasing function and approximates the Heaviside
function as e goes to zero, suppH 0e � ð�e; eÞ, kH 0ek1 6 2

e.
u pert

asymptotic interface

perturbed interface

δ

L

Fig. 1. A perturbed interface (of amplitude d and wavelength L) and induced velocity.
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Let us define j0ðx; yÞ (resp. jðx; yÞ), the curvature of C0 (resp. C) at a point ðx; yÞ 2 R2. Both curvatures j0

and j are useful in an e-neighbourhood of C0 and C when the Dirac delta function on the interface is e-reg-
ularized. Nevertheless, in order to simplify the analysis and to estimate the source term, the curvatures are
extended on the full domain in such a way that
krj0kL1ðXÞ ¼ k@sj0kL1ðC0Þ; krjkL1ðXÞ ¼ k@sjkL1ðCÞ; ð27Þ
where @s denotes the tangential derivative along C or C0.
Let us recall the so-called standard pressure shift that we use in order to reformulate source term (8) of

Navier–Stokes equation (1), namely rjrH eð/Þ. By the chain rule we have
jrH eð/Þ ¼ rðjH eð/ÞÞ � ðrjÞH eð/Þ: ð28Þ

Thus,
qðotuþ u � ruÞ � r � ð2gDuÞ þ rp ¼ rjrH eð/Þ ð29Þ

can be rewritten as (r being constant)
qðotuþ u � ruÞ � r � ð2gDuÞ þ rp ¼ rðrjH eð/ÞÞ � rðrjÞH eð/Þ; ð30Þ

where pure gradient term rðrjH eð/ÞÞ can then be included to pressure term so that:
qðotuþ u � ruÞ � r � ð2gDuÞ þ rðp � rjH eð/ÞÞ ¼ �rðrjÞH eð/Þ: ð31Þ

Finally, we made the following change of variable (keeping the same notation) p � rjH eð/Þ ! p also known
as pressure shift. The reformulated Navier–Stokes equation becomes:
qðotuþ u � ruÞ � r � ð2gDuÞ þ rp ¼ �rðrjÞH eð/Þ: ð32Þ

We can now begin to find a bound on the perturbed velocity. To do so, we write equation (32) associated to
both interfaces C0 and C. We denote u the velocity field associated to the interface C0 and verifying
qðotuþ u � ruÞ � r � ð2gDuÞ þ rp0 ¼ �rðrj0ÞH eð/0Þ;
r � ðuÞ ¼ 0

�
ð33Þ
and v the velocity field associated to the interface C and verifying
qðotvþ v:rvÞ � r � ð2gDvÞ þ rp ¼ �rðrjÞH eð/Þ;
r � ðvÞ ¼ 0:

�
ð34Þ
We then denote w ¼ v� u and take the difference of (34) and (33) to obtain (assuming q and g are constant
and denoting q ¼ p � p0)
r � ðwÞ ¼ 0; ð35Þ
qotw�r � ð2gDwÞ þ qv:rwþ qw:ruþrq ¼ �r½rðj� j0Þ�H eð/Þ � r½rj0�½H eð/Þ � H eð/0Þ�: ð36Þ
One can show that right-hand side terms verify the following inequalities:
k½rðj� j0Þ�H eð/ÞkL1ðXÞ 6 c
d

L3
; ð37Þ

k½rj0�½H eð/Þ � H eð/0Þ�kL1ðXÞ 6 kosj0kL1ðC0Þ
cd
e
; ð38Þ
the source term of (36), denoted g below, is then bounded at time t ¼ 0, in L1ðR2Þ norm by
kgð0ÞkL1ðXÞ 6 cr
d

L3
þ kosj0kL1ðC0Þ

d
e

� �
; ð39Þ
where c does not depend on d, L, e and r. We note that the inequality involving e is not optimal when e goes to
zero, but we will see that it is sufficient for the analysis with e � Dx.

We will now perform a so-called L2 energy estimate of (36) [50]. It consists in multiplying equation (36) by w

and integrating resulting equation over X. Taking into account that w is divergence free, the pressure gradient
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term vanishes; then by use of definition of L2ðXÞ-norm, Green theorem and Cauchy–Schwarz inequality, it
reads
q
2

d

dt
kwk2

L2ðXÞ þ gkrwk2
L2ðXÞ 6 kgkL2ðXÞkwkL2ðXÞ þ qkrukL1ðXÞkwk

2
L2ðXÞ: ð40Þ
After this mathematically rigorous analysis, we decide to introduce Assumption 4.

Assumption 4. It is the first assumption of this derivation, namely
krwkL2ðXÞ �
1

L
kwkL2ðXÞ; ð41Þ
i.e. a source term induces a velocity perturbation which is essentially of the same wavelength L. Note that this
assumption is numerically verified as it can be seen, for instance in Fig. 4 (where the vortex size is of the same
order of the interface perturbation’s wavelength).

Furthermore, it is probably not so easy to prove rigorously this estimation, even for Stokes equation.
Thanks to (41), there exists a constant C such that
q
2

d

dt
kwk2

L2ðXÞ þ
Cg

L2
� qkrukL1ðXÞ

� �
kwk2

L2ðXÞ 6
L2

Cg
kgk2

L2ðXÞ: ð42Þ
Note that, because (41) is not an equality, we only know that C is of order one but its value is not known
exactly. This plays a role in the fact that it will not be possible to predict an exact value of c2. This will be
discussed later.

To continue the derivation, we now introduce Assumption 5.

Assumption 5. It is the second and last assumption of this derivation, namely
qkrukL1ðXÞ 6
Cg

2L2
; ð43Þ
which is true for sufficiently low Reynolds numbers.

Then, the end of the derivation is completely mathematically rigorous and relies on standard mathematical
analysis tools for partial differential equations. By plugging (43) into (42) and using Gronwall’s lemma we get
kwðtÞk2
L2ðXÞ 6 kwð0Þk

2
L2ðXÞ exp � Cg

qL2
t

� �
þ 1� exp � Cg

qL2
t

� �� �
L4

C2g2
sup

s2ð0;tÞ
kgðsÞk2

L2ðXÞ: ð44Þ
If we consider that the initial velocity is not perturbed, wð0Þ ¼ 0 and the source term g is maximal for t ¼ 0,
finally
kwðtÞkL2ðXÞ 6 1� exp � Cg

qL2
t

� �� �
L2

Cg
kgð0ÞkL2ðXÞ 8t > 0: ð45Þ
Using again the profile of the solution (as in Assumption (41)) and the surface tension term, we have
kwkL2ðXÞ � L0kwkL1ðXÞ

kgkL2ðXÞ � L0kgkL1ðXÞ
ð46Þ
Assumptions (46) and inequality (45) yield
kwðtÞkL1ðXÞ 6 1� exp � Cg

qL2
t

� �� �
L2

Cg
kgð0ÞkL1ðXÞ 8t > 0: ð47Þ
Considering a time discretization of (36) with an implicit discretization of the diffusive term and an explicit
discretization of the source term, discrete analog of (47) on a time step Dt is
kwðDtÞkL1ðXÞ 6
Dt

q L2

Cgþ Dt

L2

Cg
kgð0ÞkL1ðXÞ 8t > 0: ð48Þ
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As mentioned in the previous outline (on page 7), with (24), we can now determine an inequality verified by the
capillary time step Dtr. If the displacement of the interface is larger than 2d, perturbations are amplified and
oscillate. Finally, with (24), (39), (48) combined, we can write the stability condition by saying that the oscil-
lations are removed if
Dtr ¼
d

kwðDtrÞkL1ðXÞ
6 c

q L2

Cgþ Dtr
Dtr

g
r

L

1þ kosj0kL1ðC0Þ
L3

e

: ð49Þ
As the wavelength L is upper bounded, this condition is restrictive for the smaller admissible wavelength in the
numerical process. We are then concerned with L � Dx, which gives
Dt2
r 6 c2

g
r

DxDtr þ c1

q
r

Dx3 ð50Þ
with c1, c2 two positive constants independent of physical and numerical parameters. We finally obtain (18)
which completes the derivation in the case where we consider that initial velocity is not perturbed.

If we consider a perturbation (with a given wavelength L) of the initial velocity, wð0Þ 6¼ 0, instead of a per-
turbation of the interface, the interface is deformed with the same wavelength. The same analysis can be per-
formed starting from (44). The maximal value of g is reached for a positive time, corresponding to a maximal
value of the amplitude of the deformation on the interface.

The goal of the following two sections is, first, to validate from a numerical point of view the stability con-
dition (23) and, second, to discuss features linked with this derivation and compare it with the previous heu-
ristics described in the literature. Even if the condition induced by (18) is the less restrictive, condition (23) is a
pertinent sufficient stability condition when considering flows driven by capillary instability. This point will
also be discussed in the following section.

4.2. Numerical confirmation of the stability condition

We now present numerical simulations which validate the stability condition
DtSTK ¼ c2

g
r

Dx: ð51Þ
This time step is smaller than Dtr but is close when the inertia phenomena are small. Microfluidics is a typical
example of such flows where surface tension is preponderant, and thus, unconfined droplets have a near cir-
cular shape which translates in straight channels, when the flow velocity is low. We will use this framework in
order to simulate these kind of physically stable interfaces and will show that constant c2 exhibited in our der-
ivation exists. Namely, there exists a threshold value for c2 such that if c2 is chosen under this threshold (resp.
above) the simulation becomes numerically stable (resp. unstable).

We perform numerical simulations in two dimensions taking the parameters in such a way we simulate
microflows. Namely, we consider a rectangular channel with a section of 120� 10�6 m. The maximum of
injection velocity is 9� 10�2 m/s. Viscosity and density are equal in both fluid: g1 ¼ g2 ¼ 2� 10�2 and
q1 ¼ q2 ¼ 10�8. Surface tension is r ¼ 3� 10�2. Discretization in space is such that there are 36 cells in the
section and 80 cells in the direction of the channel.

Note that with these parameters, we take, on purpose, a vanishing density in such a way that stability con-
dition (51) is (i) in order of 105 times greater than the condition proposed by Brackbill et al. and (ii) more
restrictive than the CFL condition. The latter is classically expected, contrary to (i). This will be further dis-
cussed in the following section.

We point out the quality of the numerical simulations through viewing the velocity field in the frame of
moving interface. We consider droplets moving in a straight channel, where the droplet’s shape has to con-
verge to an asymptotic shape so that the velocity field in the drop frame of reference is tangential to the inter-
face. Details on how to exhibit the drop frame of reference are given in Appendix A.

As a first test case, we take as initial condition an interface which is ellipsoidal such that it converges to a
near circular droplet shape (with diameter equal to 2/3 of channel section) under the mentioned flow condi-
tions. This initial state is shown in the left of Fig. 2. An asymptotic stable shape is obtained in finite time and



Fig. 2. Left: initial state of simulation. Right: asymptotic state of the droplet. Interface is represented by a thick black line and velocity
field in droplet’s frame of reference is represented by blue arrows. Note that arrows scale of the right is 10 times the one on the left. On the
right, streamlines are added with black thin arrowed lines and show that the asymptotic state has been reached. Here c2 ¼ 8. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shown in the right of Fig. 2. In this test, c2 ¼ 8. The numerical simulation remains stable for all computational
time and one can observe that the asymptotic shape is reached since streamlines in the droplet’s frame of ref-
erence are tangent to the interface.

Such snapshot is always obtained for values of c2 such that: c2 6 8; this is the threshold above which sim-
ulations become unstable. As a matter of fact, if we run the same simulation with c2 ¼ 9, the interface first
converges toward the asymptotic shape and then becomes unstable. In the left of Fig. 3, we see the same initial
state presented in the left of Fig. 2 except that we use the arrow scale of the right of Fig. 2; this allows to have
an idea of the scaling change. In the right of Fig. 3, the snapshot at the same time of the right of Fig. 2 is
shown and clearly exhibits the numerical instabilities due to the violation of our condition. When looking
at the evolution of this interface, we see that it oscillates around the asymptotic with an amplitude growing
with time, leading to inconsistent results and eventually a break of the simulation. Such parasitic currents
do not have to be confused with the ones discussed in Section 1, which are of greater size and which do
not diminish with mesh refinement.

Note that we also perform same simulations which show that this threshold value c2 ¼ 8 is unchanged
under mesh refinement, which numerically proves the independence of c2 with respect to the mesh size, as
shown in our derivation. In the same manner, this threshold is independent of g and r. Furthermore, if q
is increased this value of c2 also lead to numerically stable simulations as it is predicted by the analysis.
For large q, note that the stability condition induced by (20) is not optimal and can be relaxed to the one
induced by (18).

With our computation of curvature, the critical value to develop instabilities is around c2 ¼ 8. For such a
value, instabilities are very long to develop or to decrease (for c2 slightly under 8). The good choice for the
Fig. 3. Left: initial state of simulation. Right: asymptotic state of the droplet. Interface is represented by a thick black line and velocity
field in the droplet’s frame of reference is represented by blue arrows. Note that arrows’ scale is the same on the left and on the right, as
well as in the right of Figure 2. There, we can clearly see that the simulation is unstable with parasitic currents near the interface. The
asymptotic state is never reached and oscillations of both velocity field and interface grow along time and can induce a break of the
simulation. Here c2 ¼ 9. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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the surface tension term, in order to remove this constraint. Due to the highly non-linear coupling induced by
/ in (1), (2), (4), implicit treatment of surface tension is not an easy task. A step in this direction was recently
performed by Hysing in [14] where he proposed a semi-implicit discretization of the surface tension term.

The present derivation of the stability condition shows that if the curvature is regularized (for instance, via
an interpolation procedure as it is the case in several methods) then the capillary time step Dtr is increased. As
a matter of fact, perturbations of the interface with a small wavelength L and a small amplitude d are modified
by a smoothing effect leading to a smaller amplitude d and a larger wavelength L. Following the derivation of
Proposition 1, the perturbed velocity w is lower. This thus leads to a relaxation of the time step constraint. For
this reason, the constant c2 is not universal since it depends on how curvature is computed. To summarize on
quantification of c2, one has to figure out that taking into account present derivation:

� c2 is of order one (this has also been shown numerically) for a computed curvature assumed to lead to the
worst case;
� thus, if numerical method leads to smoothed curvature, c2 can be of an order greater than one;
� and, because of Assumption 4 which is not an equality, it is not possible to give an exact value of c2 by

algebra and taking into account formula used to compute curvature.

In the following two sections, we point out previous derivations of capillary stability conditions and com-
pare them with respect to linked flow characteristics.

4.3.1. Comparison with previous heuristics

To our knowledge, the first derivation of a stability condition induced by surface tension forces is given in
[4]. Different from the one derived here, this capillary stability condition is
DtBKZ �
ffiffiffi
q
r

r
Dx3=2 ð52Þ
The derivation of (52) puts more emphasis on the terms linked with the density in the Navier–Stokes equation
(i.e. unsteady and inertia terms) rather than on the viscous terms. Indeed, the viscosity does not appear, as a
parameter, in this stability condition.

The same stability condition as (52) is given in [21] with a heuristic based on an estimate of the capillary
velocity. Nevertheless the estimate of this velocity takes into account an equation on velocity reduced to
q
ou

ot
� rjdð/Þn ð53Þ
leading to the following estimate (argued on dimensional grounds) of discrete capillary velocity:
uBKZ �
r
q

Dtr
Dx2

: ð54Þ
Note that in the present paper, full Navier–Stokes equations are taken into account and we perform as far as
we can rigorous mathematical analysis which is then completed by two relevant physical assumptions (for
which rigorous proof is arguably beyond the scope of this paper) and allows to derive a different capillary
velocity,
ur �
r

qDx2 þ cDtrg
Dtr: ð55Þ
This reduces to a stronger velocity for Stokes equation (q ¼ 0),
uSTK �
r
g
: ð56Þ
Then, estimations of capillary velocity are plugged in a CFL-like condition stability, i.e.,
Dt	 ¼
Dx
u	
: ð57Þ
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Consequently, three stability conditions induced by surface tension can be obtained:

� (52) if velocity (54) is used;
� or (18) if velocity (55) is used;
� or (20) if velocity (56) is used.

For low Reynolds, the time step (20) is close to (18) and has been validated in Section 4.2, we discuss below a
comparison of (52) and (20) with respect to flow characteristics.

4.3.2. Time steps associated to various flow regimes

In order to compare two previously mentioned capillary time steps, let us recall that Dtc is the classical CFL
time step, DtBKZ is the time step derived in [4], DtSTK the time step derived here with q ¼ 0, and let us associate
the corresponding velocities:
Dtc �
1

kukL1ðXÞ
Dx; ð58Þ

DtBKZ �
ffiffiffi
q
r

r
Dx3=2 :¼ 1

uBKZ

Dx; ð59Þ

DtSTK �
g
r

Dx :¼ 1

uSTK

Dx: ð60Þ
Remark that capillary velocities verify uSTK ¼ r
g and uBKZ ¼

ffiffiffiffi
N
Re

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kukL1ðXÞuSTK

q
, where N is the number of

mesh cells in the direction of the characteristic length (e.g. channel’s diameter).

When the capillary velocity uSTK is high compared to the flow velocities (due to low injection), the stability
condition induced by time step (60) is restrictive, but when the Reynolds number is small,
Re
 N
kukL1ðXÞ

uSTK

; ð61Þ
the time step (59) is even smaller. In the previous paragraph, we have seen that our stability condition suffices
for stable simulations and is close to (18).

For sufficiently high Reynolds,
Re� N
kukL1ðXÞ

uSTK

; ð62Þ
the time step (59) is less restrictive than the time step (60). In such regimes, inertia phenomena are preponder-
ant, the stability condition (60) (optimal only for low Reynolds) has then to be replaced by (18) which is close
to (59) when viscosity vanishes. Nevertheless, for such regimes (Re!1), it is not clear that we are concerned
with capillary instabilities because of turbulent flows inducing physical instabilities of the interface. It becomes
difficult to distinguish numerical and physical instabilities of the interface.

To conclude this section, we return to the well-known time step (19),
DtBKZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

q
r

Dx3

r
; ð63Þ
where c1 can be numerically calibrate on the system
q ou
ot þrp ¼ rjdð/Þn;
r � u ¼ 0;
o/
ot þ u � r/ ¼ 0:

ð64Þ
The constants c2 and c1 being known, it is then possible to compute the less restrictive time step Dtr induced by
(18). Nevertheless, since
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maxðDtSTK;DtBKZÞ 6 Dtr 6
1þ

ffiffiffi
5
p

2
maxðDtSTK;DtBKZÞ; ð65Þ
for all regimes, Dtr is always equal to
Dtr ¼ a maxðDtSTK;DtBKZÞ ð66Þ

with 1 6 a 6 1:62. Consequently, the two time steps DtSTK, DtBKZ are the two main quantities to determine a
pertinent stability condition by taking the maximum of these two values.

For microfluidic applications, small dimensions lead to low inertia phenomena, the maximal value of DtSTK

and DtBKZ is DtSTK.
5. Microfluidic applications

Due to preponderant effect of surface tension, flows of two immiscible fluids in microdevices allow to create
monodisperse emulsions where droplets of the same size move through microchannels networks and are used
as microreactors to study very fast chemical kinetics.

In this section, we show numerical simulations of such microdroplets obtained with the Level Set method
described previously together with the new stability condition. As we are interested in the mixing dynamics
inside microdroplets, we essentially present velocity fields and streamlines in the drop frame of reference,
for moving interface with stabilized shape (see Appendix A). We note that in microflows, due to confinement,
3D effects have to be considered in order to obtain a full description of the flow. Nonetheless, we will see that
2D simulations are a first step allowing to have a qualitative description of mixing dynamics which is in good
agreement with physical experiments. In all the following figures presenting numerical simulations, droplets
move from top to bottom.

We begin by presenting an unconfined droplet in a microchannel in Fig. 8. The droplet (in black) is plotted
together with the global velocity field and a perfect circle (in red) in order to show the accuracy of the method
and the influence of surface tension: even if the curvature is a small perturbation of a circle, the velocity field is
noticeably modified. In Fig. 9, we also present the associated velocity field in the drop frame of reference and
some streamlines which reveal the mixing dynamics inside the droplet.

We then propose a snapshot series of confined microdroplets. For all simulations, we used 36 cells to dis-
cretize the channel section. We checked that results are invariant under mesh refinement, which shows that
computations are fully converged. We consider two sizes of droplets. One, which will be called the ‘‘small”
droplet has a width of the order of the channel width D, namely D ¼ 120 micrometers and a length of order
1:3D. The other, which will be called the ‘‘big” droplet has a width of the order of the channel width D and a
length of order 2D. Injection velocity in the channel is uin ¼ 0:2 m=s. Droplet viscosity is 2� 10�2 kg=ðmsÞ and
Unconfined microdroplet (black line) together with the associated global velocity field (blue arrows) and a perfect circle (red line).
terpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Comparison of Figs. 9–11 shows the modification of mixing dynamics induced by confinement and droplet
volume. It appears that in every case there is a major mixing zone in the center of the droplet and two smaller
zones, in the front and at the back of the droplet where the fluid is trapped. This has been observed both exper-
imentally and numerically [9,36], by using passive tracers or dye inside the droplets. Fig. 12 is a snapshot of a
movie of physical experiment [9] of evolving microdroplets with passive tracers inside. The movie shows the
motion of tracers along streamlines of the type of Fig. 10 and also that some tracers are trapped at the back of
the droplet, as it can be seen in Fig. 12. Another physical experiment [9], emphasizing the presence of a zone in
the front of the droplet which is not concerned by the flow at the center of the droplet (also referred as ‘‘dead
zone” in the microdroplet community) is presented in Fig. 13. In this experiment, dye is injected in the droplet
and a chemical reaction occurs inside the droplet leading to a visual disappearance of the dye, when the drop-
lets is transported along the channel (from left to right). We do not insist here on this reaction but on the mix-
ing dynamics which can be observed inside the droplet. We see that dye does not propagate in the front of the
droplet but is mainly carried along the central mixing zone (see the central droplet in Fig. 13). This is an evi-
dence of autonomous recirculation zone, in the front of the droplet, which does not exchange fluid with the
center of the droplet.

Dynamics change due to viscosity switch between the two fluids is shown in Fig. 14, which can be compared
with Fig. 10.

The effect of a change of injection velocity is shown in Figs. 15 and 16 where injection velocity is set to
uin ¼ 0:1 m=s. Again droplet’s shape is modified together with mixing dynamics inside. Increasing again the
role of surface tension by lowering injection velocity to uin ¼ 0:05 m=s has the effect shown in Figs. 17 and
18. Comparing Figs. 10, 11, 15, 16 and 17, 18, we see that the increase of surface tension effect naturally
induces more spherical interface at the front and the back of the droplet.

The viscosity ratio between the droplet and the carrying fluid is also responsible for various mixing dynam-
ics inside the droplet. Figs. 19 and 20 show the results of simulations where viscosities are modified as follows:
droplet viscosity is 2� 10�3 kg=ðmsÞ and viscosity of the continuous fluid is 2� 10�2 kg=ðmsÞ, namely a vis-
cosity ratio of 10 which arises in microfluidic applications. Comparing these figures with the references sim-
ulations, it appears that increase of viscosity ratio induces a strengthening of recirculation in the front and at
Fig. 12. A snapshot of a physical experiment [9]: two moving microdroplets (from right to left) with passive tracers inside (small dark
points); the movie from which is extracted this photograph shows that some tracers moves along streamlines of the type of Fig. 10 and also
that some tracers are trapped at the back of the droplet.

Fig. 13. Another snapshot of a physical experiment [9]: three moving microdroplets (from left to right) with dye inside (dark color); the
movie from which is extracted this photograph shows that dye is mainly carried along the central mixing zone and does not propagate in
the front of the droplet.
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the back of the droplet together with a backward motion of the core of central recirculation due to viscous
coupling.

We also present a third droplet shape with width of the order of the channel width D and a length of order
2:5D. We use reference data with two injection velocities uin ¼ 0:2 m=s (Fig. 21) and uin ¼ 0:02 m=s (Fig. 22).
We see that increasing influence of surface tension between Figs. 21 and 22 leads to a more marked recircu-
lation zone in the front of the droplet. This is shown by streamlines of Fig. 22: the second marked recirculation
zone at the front of the droplet induces a decreased volume of the central mixing zone, compared to Fig. 21.

Thus, using algorithms described in this paper, we can explore mixing dynamics inside microdroplets. This
can help in the design of microflows configurations with microdroplets achieving the flow control needed in
practical applications.
6. Conclusion

In this paper, we derived a new stability condition induced by the explicit discretization of the surface ten-
sion term in incompressible bifluid models adopting CSF method. This new stability condition is adapted for
the whole Reynolds numbers and degenerates to the stability condition of Brackbill et al. for low viscosities
(leading to high Reynolds numbers). Moreover, in the case of low densities or small domain (leading to low
Reynolds), our stability condition degenerates to a condition which involves viscosity instead of density and is
better suited for such flows. This latter condition was validated by a numerical study and if it is transgressed,
parasitic currents can occur near the interface. To sum up it appears this general stability condition is prac-
tically equivalent to take the maximum of these two previous time steps: this maximum allows to pick up the
appropriate condition with respect to the associated regime (high or low Reynolds numbers). A numerical
code was developed based on essential tools of the Level Set technology, namely WENO5 schemes, TVD Run-
ge–Kutta schemes and PDE based redistanciation were used to achieve accurate simulations of surface ten-
sion-driven flows. In a staggered grid framework, we used an augmented Lagrangian method to solve
incompressible Navier–Stokes equation.

We validated the new stability condition by simulating microflows and exploring various mixing dynamics
inside microdroplets. This is the first such demonstration we are aware of in the context of numerical simu-
lation of moving microdroplets in straight microchannels, where mixing dynamics dependence on confine-
ment, droplet volume, injection velocity and viscosity ratio is studied. Our numerical results are in good
agreement with physical experiments and available results of the literature.

Algorithms developed in this paper allow for simulations which can help in the design of microflows con-
figurations with microdroplets achieving the flow control needed in practical applications. In future work, we
will study 3D effects on microdroplets dynamics with a 3D code.
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Appendix A. Velocity in the drop frame of reference

In microfluidics, due to surface tension, interfaces converge quickly toward stationary shape. In this sec-
tion, we describe a method for microflows in straight channels which makes the most of the stationary shapes
of the interfaces. By working in the drop frame of reference, the normal velocity vanishes at droplet shape
equilibrium. Small normal velocity is the criterion of stabilized asymptotic shape. Then, in a straight channel,
the global flow is the superposition of the velocity in the droplet frame of reference and the constant transla-
tion velocity of the droplet.

To compute such a decomposition, we thus need to define this latter scalar droplet velocity. This velocity
has a meaning as soon as the shape of the droplet is stabilized and then there exist a scalar ud such that
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u ¼ udUþ v; v � n ¼ 0 on C0; ðA:1Þ

where U is a ‘unitary” flow parallel to the wall in a regular channel. Then the droplet moves with the global
velocity udU and the velocity in the drop frame of reference is v.

In the general case, with stabilized or destabilized droplet shape, we define the local droplet’s velocity on the
fluid interface where U � n 6¼ 0 as
uloc
d ¼

u � n
U � n on C0: ðA:2Þ
We then define the droplet’s velocity ud as the mean value of local droplet velocities, where U � n is far from
zero. When the local droplet velocities are close to be identical along C0, the normal global velocity, u � n, ver-
ifies, by virtue of definition (A.2),
u � n ¼ udU � n on C0: ðA:3Þ
It follows that definition (A.1) is fulfilled, in particular, v � n ¼ 0 on C0. We are then concerned with a stabi-
lized interface C0 moving with the scalar velocity ud along the channel direction. Criteria of a stabilized inter-
face are the smallness of quantity v � n or (and it is equivalent) uniform local velocities in the sense of (A.2). In
our code, we use this latter criterion in order to avoid useless iterations.

There are several advantages in determining ud. First, knowing ud allows to plot the velocity in the droplet
frame of reference v and to analyse the mixing dynamics inside the droplet. Second, when the goal is only to
analyse the velocity field in the drop frame of reference for a simple channel, it is not necessary to follow the
displacement of the droplet. We then transport the interface only with velocity v instead of udUþ v and we can
use a small channel containing the droplet to reduce the numerical cost. As a matter of fact, by working in the
drop frame of reference, the droplet does not translate and its shape converges to the stabilized shape. Third,
this static asymptotic allows a better convergence of the droplet’s shape and velocity field. In particular, the
computations of viscosity and curvature do not change asymptotically on the grid.
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